Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 853
Filtrar
1.
Genes (Basel) ; 15(4)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38674414

RESUMEN

Carnitine acetyltransferase (CAT) and Enoyl-CoA hydratase short-chain 1 (ECHS1) are considered key enzymes that regulate the ß-oxidation of fatty acids. However, very few studies have investigated their full length and expression in genetically improved farmed tilapia (GIFT, Oreochromis niloticus), an important aquaculture species in China. Here, we cloned CAT and ECHS1 full-length cDNA via the rapid amplification of cDNA ends, and the expressions of CAT and ECHS1 in the liver of juvenile GIFT were detected in different fat and carnitine diets, as were the changes in the lipometabolic enzymes and serum biochemical indexes of juvenile GIFT in diets with different fat and carnitine levels. CAT cDNA possesses an open reading frame (ORF) of 2167 bp and encodes 461 amino acids, and the ECHS1 cDNA sequence is 1354 bp in full length, the ORF of which encodes a peptide of 391 amino acids. We found that juvenile GIFT had higher lipometabolic enzyme activity and lower blood CHOL, TG, HDL-C, and LDL-C contents when the dietary fat level was 2% or 6% and when the carnitine level was 500 mg/kg. We also found that the expression of ECHS1 and CAT genes in the liver of juvenile GIFT can be promoted by a 500 mg/kg carnitine level and 6% fat level feeding. These results suggested that CAT and ECHS1 may participate in regulating lipid metabolism, and when 2% or 6% fat and 500 mg/kg carnitine are added to the feed, it is the most beneficial to the liver and lipid metabolism of juvenile GIFT. Our results may provide a theoretical basis for GIFT feeding and treating fatty liver disease.


Asunto(s)
Carnitina O-Acetiltransferasa , Carnitina , Enoil-CoA Hidratasa , Hígado , Animales , Hígado/metabolismo , Carnitina/metabolismo , Carnitina O-Acetiltransferasa/genética , Carnitina O-Acetiltransferasa/metabolismo , Enoil-CoA Hidratasa/genética , Enoil-CoA Hidratasa/metabolismo , Cíclidos/genética , Cíclidos/metabolismo , Cíclidos/crecimiento & desarrollo , Grasas de la Dieta/farmacología , Grasas de la Dieta/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Metabolismo de los Lípidos/genética
2.
FEBS Open Bio ; 14(4): 655-674, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38458818

RESUMEN

Multifunctional enzyme, type-1 (MFE1) catalyzes the second and third step of the ß-oxidation cycle, being, respectively, the 2E-enoyl-CoA hydratase (ECH) reaction (N-terminal part, crotonase fold) and the NAD+-dependent, 3S-hydroxyacyl-CoA dehydrogenase (HAD) reaction (C-terminal part, HAD fold). Structural enzymological properties of rat MFE1 (RnMFE1) as well as of two of its variants, namely the E123A variant (a glutamate of the ECH active site is mutated into alanine) and the BCDE variant (without domain A of the ECH part), were studied, using as substrate 3S-hydroxybutanoyl-CoA. Protein crystallographic binding studies show the hydrogen bond interactions of 3S-hydroxybutanoyl-CoA as well as of its 3-keto, oxidized form, acetoacetyl-CoA, with the catalytic glutamates in the ECH active site. Pre-steady state binding experiments with NAD+ and NADH show that the kon and koff rate constants of the HAD active site of monomeric RnMFE1 and the homologous human, dimeric 3S-hydroxyacyl-CoA dehydrogenase (HsHAD) for NAD+ and NADH are very similar, being the same as those observed for the E123A and BCDE variants. However, steady state and pre-steady state kinetic data concerning the HAD-catalyzed dehydrogenation reaction of the substrate 3S-hydroxybutanoyl-CoA show that, respectively, the kcat and kchem rate constants for conversion into acetoacetyl-CoA by RnMFE1 (and its two variants) are about 10 fold lower as when catalyzed by HsHAD. The dynamical properties of dehydrogenases are known to be important for their catalytic efficiency, and it is discussed that the greater complexity of the RnMFE1 fold correlates with the observation that RnMFE1 is a slower dehydrogenase than HsHAD.


Asunto(s)
Enoil-CoA Hidratasa , NAD , Animales , Humanos , Ratas , Dominio Catalítico , Enoil-CoA Hidratasa/química , Enoil-CoA Hidratasa/metabolismo , Ácido Glutámico , NAD/metabolismo , Oxidorreductasas/metabolismo
3.
Metab Brain Dis ; 39(4): 611-623, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38363494

RESUMEN

Short-chain enoyl-CoA hydratase deficiency (ECHS1D) is a rare congenital metabolic disorder that follows an autosomal recessive inheritance pattern. It is caused by mutations in the ECHS1 gene, which encodes a mitochondrial enzyme involved in the second step of mitochondrial ß-oxidation of fatty acids. The main characteristics of the disease are severe developmental delay, regression, seizures, neurodegeneration, high blood lactate, and a brain MRI pattern consistent with Leigh syndrome. Here, we report three patients belonging to a consanguineous family who presented with mitochondrial encephalomyopathy. Whole-exome sequencing revealed a new homozygous mutation c.619G > A (p.Gly207Ser) at the last nucleotide position in exon 5 of the ECHS1 gene. Experimental analysis showed that normal ECHS1 pre-mRNA splicing occurred in all patients compared to controls. Furthermore, three-dimensional models of wild-type and mutant echs1 proteins revealed changes in catalytic site interactions, conformational changes, and intramolecular interactions, potentially disrupting echs1 protein trimerization and affecting its function. Additionally, the quantification of mtDNA copy number variation in blood leukocytes showed severe mtDNA depletion in all probands.


Asunto(s)
ADN Mitocondrial , Enoil-CoA Hidratasa , Niño , Preescolar , Humanos , Masculino , Simulación por Computador , Consanguinidad , ADN Mitocondrial/genética , Enoil-CoA Hidratasa/genética , Enoil-CoA Hidratasa/deficiencia , Mutación/genética , Linaje
4.
Microb Cell Fact ; 23(1): 21, 2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38221622

RESUMEN

BACKGROUND: Ralstonia eutropha H16, a facultative chemolitoautotroph, is an important workhorse for bioindustrial production of useful compounds such as polyhydroxyalkanoates (PHAs). Despite the extensive studies to date, some of its physiological properties remain not fully understood. RESULTS: This study demonstrated that the knallgas bacterium exhibited altered PHA production behaviors under slow-shaking condition, as compared to its usual aerobic condition. One of them was a notable increase in PHA accumulation, ranging from 3.0 to 4.5-fold in the mutants lacking of at least two NADPH-acetoacetyl-CoA reductases (PhaB1, PhaB3 and/or phaB2) when compared to their respective aerobic counterpart, suggesting the probable existence of (R)-3HB-CoA-providing route(s) independent on PhaBs. Interestingly, PHA production was still considerably high even with an excess nitrogen source under this regime. The present study further uncovered the conditional activation of native reverse ß-oxidation (rBOX) allowing formation of (R)-3HHx-CoA, a crucial precursor for poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)], solely from glucose. This native rBOX led to the natural incorporation of 3.9 mol% 3HHx in a triple phaB-deleted mutant (∆phaB1∆phaB1∆phaB2-C2). Gene deletion experiments elucidated that the native rBOX was mediated by previously characterized (S)-3HB-CoA dehydrogenases (PaaH1/Had), ß-ketothiolase (BktB), (R)-2-enoyl-CoA hydratase (PhaJ4a), and unknown crotonase(s) and reductase(s) for crotonyl-CoA to butyryl-CoA conversion prior to elongation. The introduction of heterologous enzymes, crotonyl-CoA carboxylase/reductase (Ccr) and ethylmalonyl-CoA decarboxylase (Emd) along with (R)-2-enoyl-CoA hydratase (PhaJ) aided the native rBOX, resulting in remarkably high 3HHx composition (up to 37.9 mol%) in the polyester chains under the low-aerated condition. CONCLUSION: These findings shed new light on the robust characteristics of Ralstonia eutropha H16 and have the potential for the development of new strategies for practical P(3HB-co-3HHx) copolyesters production from sugars under low-aerated conditions.


Asunto(s)
Caproatos , Cupriavidus necator , Polihidroxialcanoatos , Cupriavidus necator/metabolismo , Polihidroxialcanoatos/metabolismo , Glucosa/metabolismo , Enoil-CoA Hidratasa/genética , Enoil-CoA Hidratasa/metabolismo
5.
Int J Mol Sci ; 24(17)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37686435

RESUMEN

Vanillin holds significant importance as a flavoring agent in various industries, including food, pharmaceuticals, and cosmetics. The CoA-dependent pathway for the biosynthesis of vanillin from ferulic acid involved feruloyl-CoA synthase (Fcs) and enoyl-CoA hydratase/lyase (Ech). In this research, the Fcs and Ech were derived from Streptomyces sp. strain V-1. The sequence conservation and structural features of Ech were analyzed by computational techniques including sequence alignment and molecular dynamics simulation. After detailed study for the major binding modes and key amino acid residues between Ech and substrates, a series of mutations (F74W, A130G, A130G/T132S, R147Q, Q255R, ΔT90, ΔTGPEIL, ΔN1-11, ΔC260-287) were obtained by rational design. Finally, the yield of vanillin produced by these mutants was verified by whole-cell catalysis. The results indicated that three mutants, F74W, Q147R, and ΔN1-11, showed higher yields than wild-type Ech. Molecular dynamics simulations and residue energy decomposition identified the basic residues K37, R38, K561, and R564 as the key residues affecting the free energy of binding between Ech and feruloyl-coenzyme A (FCA). The large changes in electrostatic interacting and polar solvating energies caused by the mutations may lead to decreased enzyme activity. This study provides important theoretical guidance as well as experimental data for the biosynthetic pathway of vanillin.


Asunto(s)
Liasas , Enoil-CoA Hidratasa/genética , Benzaldehídos , Aminoácidos
6.
Curr Opin Struct Biol ; 82: 102671, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37542911

RESUMEN

The crotonase fold is generated by a framework of four repeats of a ßßα-unit, extended by two helical regions. The active site of crotonase superfamily (CS) enzymes is located at the N-terminal end of the helix of the third repeat, typically being covered by a C-terminal helix. A major subset of CS-enzymes catalyzes acyl-CoA-dependent reactions, allowing for a diverse range of acyl-tail modifications. Most of these enzymes occur as trimers or hexamers (dimers of trimers), but monomeric forms are also observed. A common feature of the active sites of CS-enzymes is an oxyanion hole, formed by two peptide-NH hydrogen bond donors, which stabilises the negatively charged thioester oxygen atom of the reaction intermediate. Structural properties and possible use of these enzymes for biotechnological applications are discussed.


Asunto(s)
Acilcoenzima A , Enoil-CoA Hidratasa , Enoil-CoA Hidratasa/química , Enoil-CoA Hidratasa/metabolismo , Acilcoenzima A/química , Acilcoenzima A/metabolismo , Dominio Catalítico , Sitios de Unión , Cristalografía por Rayos X
7.
Structure ; 31(7): 812-825.e6, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37192613

RESUMEN

Facultative anaerobic bacteria such as Escherichia coli have two α2ß2 heterotetrameric trifunctional enzymes (TFE), catalyzing the last three steps of the ß-oxidation cycle: soluble aerobic TFE (EcTFE) and membrane-associated anaerobic TFE (anEcTFE), closely related to the human mitochondrial TFE (HsTFE). The cryo-EM structure of anEcTFE and crystal structures of anEcTFE-α show that the overall assembly of anEcTFE and HsTFE is similar. However, their membrane-binding properties differ considerably. The shorter A5-H7 and H8 regions of anEcTFE-α result in weaker α-ß as well as α-membrane interactions, respectively. The protruding H-H region of anEcTFE-ß is therefore more critical for membrane-association. Mutational studies also show that this region is important for the stability of the anEcTFE-ß dimer and anEcTFE heterotetramer. The fatty acyl tail binding tunnel of the anEcTFE-α hydratase domain, as in HsTFE-α, is wider than in EcTFE-α, accommodating longer fatty acyl tails, in good agreement with their respective substrate specificities.


Asunto(s)
Enoil-CoA Hidratasa , Escherichia coli , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Enoil-CoA Hidratasa/química , Enoil-CoA Hidratasa/metabolismo , Anaerobiosis , Mitocondrias/metabolismo , Oxidación-Reducción
8.
J Med Genet ; 60(10): 1006-1015, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37055166

RESUMEN

BACKGROUND: Enoyl-CoA hydratase short-chain 1 (ECHS1) is an enzyme involved in the metabolism of branched chain amino acids and fatty acids. Mutations in the ECHS1 gene lead to mitochondrial short-chain enoyl-CoA hydratase 1 deficiency, resulting in the accumulation of intermediates of valine. This is one of the most common causative genes in mitochondrial diseases. While genetic analysis studies have diagnosed numerous cases with ECHS1 variants, the increasing number of variants of uncertain significance (VUS) in genetic diagnosis is a major problem. METHODS: Here, we constructed an assay system to verify VUS function for ECHS1 gene. A high-throughput assay using ECHS1 knockout cells was performed to index these phenotypes by expressing cDNAs containing VUS. In parallel with the VUS validation system, a genetic analysis of samples from patients with mitochondrial disease was performed. The effect on gene expression in cases was verified by RNA-seq and proteome analysis. RESULTS: The functional validation of VUS identified novel variants causing loss of ECHS1 function. The VUS validation system also revealed the effect of the VUS in the compound heterozygous state and provided a new methodology for variant interpretation. Moreover, we performed multiomics analysis and identified a synonymous substitution p.P163= that results in splicing abnormality. The multiomics analysis complemented the diagnosis of some cases that could not be diagnosed by the VUS validation system. CONCLUSIONS: In summary, this study uncovered new ECHS1 cases based on VUS validation and omics analysis; these analyses are applicable to the functional evaluation of other genes associated with mitochondrial disease.


Asunto(s)
Enfermedades Mitocondriales , Humanos , Fenotipo , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/genética , Mutación/genética , Enoil-CoA Hidratasa/genética , Enoil-CoA Hidratasa/metabolismo , Pruebas Genéticas
9.
J Biol Chem ; 299(5): 104602, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36907440

RESUMEN

The genomes of anaerobic ammonium-oxidizing (anammox) bacteria contain a gene cluster comprising genes of unusual fatty acid biosynthesis enzymes that were suggested to be involved in the synthesis of the unique "ladderane" lipids produced by these organisms. This cluster encodes an acyl carrier protein (denoted as "amxACP") and a variant of FabZ, an ACP-3-hydroxyacyl dehydratase. In this study, we characterize this enzyme, which we call anammox-specific FabZ ("amxFabZ"), to investigate the unresolved biosynthetic pathway of ladderane lipids. We find that amxFabZ displays distinct sequence differences to "canonical" FabZ, such as a bulky, apolar residue on the inside of the substrate-binding tunnel, where the canonical enzyme has a glycine. Additionally, substrate screens suggest that amxFabZ efficiently converts substrates with acyl chain lengths of up to eight carbons, whereas longer substrates are converted much more slowly under the conditions used. We also present crystal structures of amxFabZs, mutational studies and the structure of a complex between amxFabZ and amxACP, which show that the structures alone cannot explain the apparent differences from canonical FabZ. Moreover, we find that while amxFabZ does dehydrate substrates bound to amxACP, it does not convert substrates bound to canonical ACP of the same anammox organism. We discuss the possible functional relevance of these observations in the light of proposals for the mechanism for ladderane biosynthesis.


Asunto(s)
Proteína Transportadora de Acilo , Hidroliasas , Hidroliasas/metabolismo , Lípidos , Enoil-CoA Hidratasa/metabolismo
10.
Chemosphere ; 322: 138200, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36828109

RESUMEN

The disposal of soybean pulp (okara) (∼14 M tons annually) represents a global concern. α-ketoisocaproate (KIC) is an intrinsic l-leucine metabolite boosting mammalian muscle growth and has great potential in animal husbandry. However, the use of pure l-leucine (5000 USD/kg) for KIC (22 USD/kg) bioproduction is cost-prohibitive in practice, while okara rich in l-leucine (10%) could serve as an economical alternative. Following the concept of a circular bioeconomy, we managed to develop a cost-efficient platform to valorize okara into KIC. In this study, proteolytic Bacillus subtilis strain 168 capable of utilizing okara as a comprehensive substrate was employed as the whole-cell biocatalyst for KIC bioproduction. First, we elucidated the function of genes involved in KIC downstream metabolism in strain 168, including those encoding 2-oxoisovalerate dehydrogenase (bkdAA), 2-oxoisovalerate decarboxylase (bkdAB), enoyl-CoA hydratase (fadB), and bifunctional enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase (fadN). Among those KIC downstream metabolizing mutants of strain 168, the 2-oxoisovalerate decarboxylase gene knockout strain (ΔbkdAB) was found to have a better accumulation of KIC. To further improve the KIC yield, a soluble l-amino acid deaminase (LAAD) from Proteus vulgaris was heterologously expressed in the ΔbkdAB strain and a ∼50% conversion of total l-leucine contained in okara was catalyzed into KIC, along with a ∼50% reduction of CO2 emission compared to the wild-type cultures. Altogether, this renovated biocatalytic system provides an alternative platform to valorize okara for producing value-added chemicals in an eco-friendly manner.


Asunto(s)
Carboxiliasas , Glycine max , Animales , Leucina/metabolismo , Glycine max/genética , Glycine max/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Enoil-CoA Hidratasa , Mamíferos/metabolismo
11.
J Lipid Res ; 64(3): 100326, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36592657

RESUMEN

Compared with other species, freshwater fish are more capable of synthesizing DHA via same biosynthetic pathways. Freshwater fish have a "Sprecher" pathway to biosynthesize DHA in a peroxisome-dependent manner. Enoyl-CoA hydratase/3-hydroxyacyl CoA dehydrogenase (Ehhadh) is involved in the hydration and dehydrogenation reactions of fatty acid ß-oxidation in peroxisomes. However, the role of Ehhadh in the synthesis of DHA in freshwater fish remains largely unclear. In this study, the knockout of Ehhadh significantly inhibited DHA synthesis in zebrafish. Liver transcriptome analysis showed that Ehhadh deletion significantly inhibited SREBF and PPAR signaling pathways and decreased the expression of PUFA synthesis-related genes. Our results from the analysis of transgenic zebrafish (Tg:Ehhadh) showed that Ehhadh overexpression significantly increased the DHA content in the liver and significantly upregulated the expression of genes related to PUFA synthesis. In addition, the DHA content in the liver of Tg:Ehhadh fed with linseed oil was significantly higher than that of wildtype, but the expression of PUFA synthesis-related genes fads2 and elovl2 were significantly lower, indicating that Ehhadh had a direct effect on DHA synthesis. In conclusion, our results showed that Ehhadh was essential for DHA synthesis in the "Sprecher" pathway, and Ehhadh overexpression could promote DHA synthesis. This study provides insight into the role of Ehhadh in freshwater fish.


Asunto(s)
Enoil-CoA Hidratasa , Pez Cebra , Animales , Enzima Bifuncional Peroxisomal/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Enoil-CoA Hidratasa/genética , Enoil-CoA Hidratasa/metabolismo , Enoil-CoA Hidratasa/farmacología , Peroxisomas/metabolismo , Hígado/metabolismo , 3-Hidroxiacil-CoA Deshidrogenasas/genética , 3-Hidroxiacil-CoA Deshidrogenasas/metabolismo , 3-Hidroxiacil-CoA Deshidrogenasas/farmacología , Acetiltransferasas/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
12.
Pediatr Dev Pathol ; 26(2): 138-143, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36515364

RESUMEN

Short-chain enoyl-CoA hydratase 1 (ECHS1) is an enzyme that participates in the metabolism of valine, transforming methacrylyl-CoA in ß-hydroxy-isobutyryl-CoA. There is an accumulation of intermediate acids and ammonium as a consequence of its deficit. This background generates a harmful environment for the brain causing neuronal death and severe brain lesions. We present a case of a 39 weeks newborn that died at 31 hours old. We found vacuolization in basal areas, brain stem, cerebellum and spinal cord white matter (spongiform myelinopathy). These vacuoles were periodic acid-Schiff stain negative, there were neither acompanion gliosis nor macrophagic reaction. These findings were suggestive of metabolism acid disorders. The final diagnosis was confirmed by genetic study by massive parallel sequencing, showing 2 previously described pathogenic variants (c.160C > T and c.394G > A) of short-chain enoyl-CoA hydratase 1 gene. To our knowledge, this is the first case reporting the histological changes in short-chain enoyl-CoA hydratase 1 deficiency. Histological study provides useful information to orientate the diagnostic and clarify the clinical manifestations, especially in hospitals where urine or blood samples are not taking routinely or where genetic studies may not be performed.Synopsis: The main neuropathological findings in Short-chain enoyl-CoA hydratase 1 deficiency are the presence of whitte matter vacuoles in basal areas, brain stem and spinal cord.


Asunto(s)
Encéfalo , Enoil-CoA Hidratasa , Recién Nacido , Humanos , Diagnóstico Diferencial , Enoil-CoA Hidratasa/genética , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Neuropatología
13.
FEBS J ; 290(1): 225-246, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35962613

RESUMEN

Short-chain enoyl-CoA hydratase 1 (ECHS1) is involved in the second step of mitochondrial fatty acid ß-oxidation (FAO), catalysing the hydration of short-chain enoyl-CoA esters to short-chain 3-hyroxyl-CoA esters. Genetic deficiency in ECHS1 (ECHS1D) is associated with a specific subset of Leigh Syndrome, a disease typically caused by defects in oxidative phosphorylation (OXPHOS). Here, we examined the molecular pathogenesis of ECHS1D using a CRISPR/Cas9 edited human cell 'knockout' model and fibroblasts from ECHS1D patients. Transcriptome analysis of ECHS1 'knockout' cells showed reductions in key mitochondrial pathways, including the tricarboxylic acid cycle, receptor-mediated mitophagy and nucleotide biosynthesis. Subsequent proteomic analyses confirmed these reductions and revealed additional defects in mitochondrial oxidoreductase activity and fatty acid ß-oxidation. Functional analysis of ECHS1 'knockout' cells showed reduced mitochondrial oxygen consumption rates when metabolising glucose or OXPHOS complex I-linked substrates, as well as decreased complex I and complex IV enzyme activities. ECHS1 'knockout' cells also exhibited decreased OXPHOS protein complex steady-state levels (complex I, complex III2 , complex IV, complex V and supercomplexes CIII2 /CIV and CI/CIII2 /CIV), which were associated with a defect in complex I assembly. Patient fibroblasts exhibit varied reduction of mature OXPHOS complex steady-state levels, with defects detected in CIII2 , CIV, CV and the CI/CIII2 /CIV supercomplex. Overall, these findings highlight the contribution of defective OXPHOS function, in particular complex I deficiency, to the molecular pathogenesis of ECHS1D.


Asunto(s)
Proteínas Mitocondriales , Fosforilación Oxidativa , Humanos , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteómica , Enoil-CoA Hidratasa/genética , Enoil-CoA Hidratasa/metabolismo , Ácidos Grasos/metabolismo
14.
Eur J Neurol ; 29(11): 3229-3242, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36200804

RESUMEN

BACKGROUND AND PURPOSE: HIBCH and ECHS1 genes encode two enzymes implicated in the critical steps of valine catabolism, 3-hydroxyisobutyryl-coenzyme A (CoA) hydrolase (HIBCH) and short-chainenoyl-CoA hydratase (ECHS1), respectively. HIBCH deficiency (HIBCHD) and ECHS1 deficiency (ECHS1D) generate rare metabolic dysfunctions, often revealed by neurological symptoms. The aim of this study was to describe movement disorders spectrum in patients with pathogenic variants in ECHS1 and HIBC. METHODS: We reviewed a series of 18 patients (HIBCHD: 5; ECHS1D: 13) as well as 105 patients from the literature. We analysed the detailed phenotype of HIBCHD (38 patients) and ECHS1D (85 patients), focusing on MDs. RESULTS: The two diseases have a very similar neurological phenotype, with an early onset before 10 years of age for three clinical presentations: neonatal onset, Leigh-like syndrome (progressive onset or acute neurological decompensation), and isolated paroxysmal dyskinesia. Permanent or paroxysmal MDs were recorded in 61% of HIBCHD patients and 72% of ECHS1D patients. Patients had a variable combination of either isolated or combined MD, and dystonia was the main MD. These continuous MDs included dystonia, chorea, parkinsonism, athetosis, myoclonus, tremors, and abnormal eye movements. Patients with paroxysmal dyskinesia (HIBCHD: 4; ECHS1D: 9) usually had pure paroxysmal dystonia with normal clinical examination and no major impairment in psychomotor development. No correlation could be identified between clinical pattern (especially MD) and genetic pathogenic variants. CONCLUSIONS: Movement disorders, including abnormal ocular movements, are a hallmark of HIBCHD and ECHS1D. MDs are not uniform; dystonia is the most frequent, and various types of MD are combined in single patient.


Asunto(s)
Corea , Distonía , Trastornos Distónicos , Enoil-CoA Hidratasa/metabolismo , Enfermedad de Leigh , Trastornos del Movimiento , Anomalías Múltiples , Errores Innatos del Metabolismo de los Aminoácidos , Coenzima A , Trastornos Distónicos/genética , Humanos , Enfermedad de Leigh/diagnóstico , Enfermedad de Leigh/genética , Trastornos del Movimiento/genética , Tioléster Hidrolasas/deficiencia , Valina/metabolismo
15.
Mar Drugs ; 20(10)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36286445

RESUMEN

Nitrogen deprivation is known to improve lipid accumulation in microalgae and thraustochytrids. However, the patterns of fatty acid production and the molecular mechanisms underlying the accumulation of unsaturated and saturated fatty acids (SFAs) under nitrogen starvation remain largely unknown for thraustochytrids. In this study, batch culture experiments under nitrogen replete and nitrogen starvation conditions were performed, and the changes in the transcriptome of Aurantiochytrium sp. PKU#SW8 strain between these conditions were investigated. Our results showed improved yields of total fatty acids (TFAs), total unsaturated fatty acids, and total SFAs under nitrogen starvation, which suggested that nitrogen starvation favors the accumulation of both unsaturated and saturated fatty acids in PKU#SW8. However, nitrogen starvation resulted in a more than 2.36-fold increase of SFAs whereas a 1.7-fold increase of unsaturated fatty acids was observed, indicating a disproportionate increase in these groups of fatty acids. The fabD and enoyl-CoA hydratase genes were significantly upregulated under nitrogen starvation, supporting the observed increase in the yield of TFAs from 2.63 ± 0.22 g/L to 3.64 ± 0.16 g/L. Furthermore, the pfaB gene involved in the polyketide synthase (PKS) pathway was significantly upregulated under nitrogen starvation. This suggested that the increased expression of the pfaB gene under nitrogen starvation may be one of the explanations for the increased yield of docosahexaenoic acid by 1.58-fold. Overall, our study advances the current understanding of the molecular mechanisms that underlie the response of thraustochytrids to nitrogen deprivation and their fatty acid biosynthesis.


Asunto(s)
Nitrógeno , Estramenopilos , Nitrógeno/metabolismo , Ácidos Docosahexaenoicos , Sintasas Poliquetidas/metabolismo , Estramenopilos/metabolismo , Ácidos Grasos Insaturados/metabolismo , Ácidos Grasos/metabolismo , Enoil-CoA Hidratasa/metabolismo
16.
Appl Environ Microbiol ; 88(22): e0130322, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36286498

RESUMEN

Steroid drug precursors, including C19 and C22 steroids, are crucial to steroid drug synthesis and development. However, C22 steroids are less developed due to the intricacy of the steroid metabolic pathway. In this study, a C22 steroid drug precursor, 9-hydroxy-3-oxo-4,17-pregadiene-20-carboxylic acid methyl ester (9-OH-PDCE), was successfully obtained from Mycolicibacterium neoaurum by 3-ketosteroid-Δ1-dehydrogenase and enoyl-CoA hydratase ChsH deficiency. The production of 9-OH-PDCE was improved by the overexpression of 17ß-hydroxysteroid dehydrogenase Hsd4A and acyl-CoA dehydrogenase ChsE1-ChsE2 to reduce the accumulation of by-products. The purity of 9-OH-PDCE in fermentation broth was improved from 71.7% to 89.7%. Hence, the molar yield of 9-OH-PDCE was improved from 66.7% to 86.7%, with a yield of 0.78 g/L. Furthermore, enoyl-CoA hydratase ChsH1-ChsH2 was identified to form an indispensable complex in Mycolicibacterium neoaurum DSM 44704. IMPORTANCE C22 steroids are valuable precursors for steroid drug synthesis, but the development of C22 steroids remains unsatisfactory. This study presented a strategy for the one-step bioconversion of phytosterols to a C22 steroid drug precursor, 9-hydroxy-3-oxo-4,17-pregadiene-20-carboxylic acid methyl ester (9-OH-PDCE), by 3-ketosteroid-Δ1-dehydrogenase and enoyl-CoA hydratase deficiency with overexpression of 17ß-hydroxysteroid dehydrogenase acyl-CoA dehydrogenase in Mycolicibacterium. The function of the enoyl-CoA hydratase ChsH in vivo was revealed. Construction of the novel C22 steroid drug precursor producer provided more potential for steroid drug synthesis, and the characterization of the function of ChsH and the transformation of steroids further revealed the steroid metabolic pathway.


Asunto(s)
Acil-CoA Deshidrogenasas , Fitosteroles , Profármacos , Fitosteroles/metabolismo , Oxidorreductasas/metabolismo , Enoil-CoA Hidratasa/genética , Enoil-CoA Hidratasa/metabolismo , Esteroides/metabolismo , Acilcoenzima A , Ácidos Carboxílicos , Cetosteroides , Ésteres
17.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36293464

RESUMEN

The lack of effective treatments for mitochondrial disease has seen the development of new approaches, including those that stimulate mitochondrial biogenesis to boost ATP production. Here, we examined the effects of deoxyribonucleosides (dNs) on mitochondrial biogenesis and function in Short chain enoyl-CoA hydratase 1 (ECHS1) 'knockout' (KO) cells, which exhibit combined defects in both oxidative phosphorylation (OXPHOS) and mitochondrial fatty acid ß-oxidation (FAO). DNs treatment increased mitochondrial DNA (mtDNA) copy number and the expression of mtDNA-encoded transcripts in both CONTROL (CON) and ECHS1 KO cells. DNs treatment also altered global nuclear gene expression, with key gene sets including 'respiratory electron transport' and 'formation of ATP by chemiosmotic coupling' increased in both CON and ECHS1 KO cells. Genes involved in OXPHOS complex I biogenesis were also upregulated in both CON and ECHS1 KO cells following dNs treatment, with a corresponding increase in the steady-state levels of holocomplex I in ECHS1 KO cells. Steady-state levels of OXPHOS complex V, and the CIII2/CIV and CI/CIII2/CIV supercomplexes, were also increased by dNs treatment in ECHS1 KO cells. Importantly, treatment with dNs increased both basal and maximal mitochondrial oxygen consumption in ECHS1 KO cells when metabolizing either glucose or the fatty acid palmitoyl-L-carnitine. These findings highlight the ability of dNs to improve overall mitochondrial respiratory function, via the stimulation mitochondrial biogenesis, in the face of combined defects in OXPHOS and FAO due to ECHS1 deficiency.


Asunto(s)
Enoil-CoA Hidratasa , Biogénesis de Organelos , Enoil-CoA Hidratasa/genética , Enoil-CoA Hidratasa/metabolismo , ADN Mitocondrial/genética , Ácidos Grasos/metabolismo , Glucosa , Carnitina , Desoxirribonucleósidos , Adenosina Trifosfato
18.
Orphanet J Rare Dis ; 17(1): 340, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-36064416

RESUMEN

BACKGROUND: Enoyl-CoA hydratase short-chain 1 (ECHS1) is a key mitochondrial enzyme that is involved in valine catabolism and fatty acid beta-oxidation. Mutations in the ECHS1 gene lead to enzymatic deficiency, resulting in the accumulation of certain intermediates from the valine catabolism pathway. This disrupts the pyruvate dehydrogenase complex and the mitochondrial respiratory chain, with consequent cellular damage. Patients present with a variable age of onset and a wide spectrum of clinical features. The Leigh syndrome phenotype is the most frequently reported form of the disease. Herein, we report a case of a male with ECHS1 deficiency who was diagnosed at 8 years of age. He presented severe dystonia, hyperlordosis, moderate to severe kyphoscoliosis, great difficulty in walking, and severe dysarthria. A valine-restricted and total fat-restricted diet was considered as a therapeutic option after the genetic diagnosis. An available formula that restricted branched-chain amino acids and especially restricted valine was used. We also restricted animal protein intake and provided a low-fat diet that was particularly low in dairy fat. RESULTS: This protein- and fat-restricted diet was initiated with adequate tolerance and adherence. After three years, the patient noticed an improvement in dystonia, especially in walking. He currently requires minimal support to walk or stand. Therefore, he has enhanced his autonomy to go to school or establish a career for himself. His quality of life and motivation for treatment have greatly increased. CONCLUSIONS: There is still a substantial lack of knowledge about this rare disorder, especially knowledge about future effective treatments. However, early diagnosis and treatment with a valine- and fat-restricted diet, particularly dairy fat-restricted diet, appeared to limit disease progression in this patient with ECHS1 deficiency.


Asunto(s)
Distonía , Enoil-CoA Hidratasa , Animales , Dieta con Restricción de Grasas , Enoil-CoA Hidratasa/genética , Enoil-CoA Hidratasa/metabolismo , Humanos , Masculino , Calidad de Vida , Valina
19.
Arch Biochem Biophys ; 730: 109391, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36087768

RESUMEN

Cupriavidus necator H16 is a gram-negative chemolithoautotrophic bacterium that has been extensively studied for biosynthesis and biodegradation of polyhydroxyalkanoate (PHA) plastics. To improve our understanding of fatty acid metabolism for PHA production, we determined the crystal structure of multi-functional enoyl-CoA hydratase from Cupriavidus necator H16 (CnFadB). The predicted model of CnFadB created by AlphaFold was used to solve the phase problem during determination of the crystal structure of the protein. The CnFadB structure consists of two distinctive domains, an N-terminal enol-CoA hydratase (ECH) domain and a C-terminal 3-hydroxyacyl-CoA dehydrogenase (HAD) domain, and the substrate- and cofactor-binding modes of these two functional domains were identified. Unlike other known FadB enzymes that exist as dimers complexed with FadA, CnFadB functions as a monomer without forming a complex with CnFadA. Small angle X-ray scattering (SAXS) measurement further proved that CnFadB exists as a monomer in solution. The non-sequential action of FadA and FadB in C. necator appears to affect ß-oxidation and PHA synthesis/degradation.


Asunto(s)
Cupriavidus necator , Polihidroxialcanoatos , Cupriavidus necator/metabolismo , Polihidroxialcanoatos/metabolismo , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Enoil-CoA Hidratasa/metabolismo , Ácidos Grasos/metabolismo , Plásticos/metabolismo , 3-Hidroxiacil-CoA Deshidrogenasa/metabolismo , Coenzima A/metabolismo
20.
J Biosci Bioeng ; 134(4): 288-294, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35953354

RESUMEN

Poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] [P(3HB-co-3HHx)] has a high potential to serve as a commercial bioplastic due to its biodegradability, thermoplastic and mechanical properties. The properties of this copolymer are greatly affected by the composition of 3HHx monomer. One of the most efficient ways to modulate the composition of 3HHx monomer in P(3HB-co-3HHx) is by manipulating the (R)-3HHx-CoA monomer supply. In this study, a new (R)-specific enoyl-CoA hydratase originating from a non-PHA producer, Streptomyces sp. strain CFMR 7 (PhaJSs), was characterized and found to be effective in supplying 3HHx monomer during in vivo production of P(3HB-co-3HHx) copolymer. The P(3HB-co-3HHx) copolymer produced from the Cupriavidus necator transformant that harbors phaJSs, PHB-4/pBBR1-CBP-M-CPF4JSs, showed enhanced 3HHx incorporation of up to 11 mol% without affecting the P(3HB-co-3HHx) production when palm oil was used as the carbon source. In addition, both kcat and kcat/Km of PhaJSs were higher toward the C6 than the shorter C4 substrates, underscoring the preference for 3-hydroxyhexanoyl-CoA. These results suggest that PhaJSs has a significant ability to supply 3HHx monomers for PHA biosynthesis via ß-oxidation and can be applied for metabolic engineering of robust PHA-producing strains.


Asunto(s)
Cupriavidus necator , Streptomyces , Ácido 3-Hidroxibutírico/metabolismo , Caproatos/metabolismo , Carbono/metabolismo , Coenzima A/metabolismo , Cupriavidus necator/metabolismo , Enoil-CoA Hidratasa/metabolismo , Aceite de Palma/metabolismo , Streptomyces/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA